Serial on cats

Precambrian Source List

Arndt, N. T., and Nisbet, E. G. 2012. Processes on the young Earth and the habitats of early life. Annual Review of Earth and Planetary Sciences, 40: 521-549.

Aubert et al. 2015. Long-term Evolution…Magnetic Field

Bekker and Holland 2012 Oxygen overshoot (Abstract only)

Beraldi-Campesi, H. 2013. Early life on land and the first terrestrial ecosystems. Ecological Processes, 2(1): 1-17.

Bernstein, H.; Byers, G. S.; and Michod, R. E. 1981. Evolution of sexual reproduction: importance of DNA repair, complementation, and variation. The American Naturalist, 117(4): 537-549.

Black, B. A.; Karlstrom, L.; and Mather, T. A. 2021. The life cycle of large igneous provinces. Nature Reviews Earth & Environment, 2(12): 840-857.

Black, B.; Mittal, T.; Lingo, F.; Walowski, K.; and Hernandez, A. 2021a. Assessing the environmental consequences of the generation and alteration of mafic volcaniclastic deposits during large igneous province emplacement. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, 117-131.

Bleeker, W. 2003. The late Archean record: a puzzle in ca. 35 pieces. Lithos, 71(2-4): 99-134.

Bond, D. P., and Sun, Y. 2021. Global Warming and Mass Extinctions Associated With Large Igneous Province Volcanism. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, 83-102.

Bowman, J. C.; Petrov, A. S.; Frenkel-Pinter, M.; Penev, P. I.; and Williams, L. D. 2020. Root of the tree: the significance, evolution, and origins of the ribosome. (Abstract only.) Chemical Reviews, 120(11): 4848-4878.

Bowyer, F.; Wood, R. A.; and Poulton, S. W. 2017. Controls on the evolution of Ediacaran metazoan ecosystems: a redox perspective. Geobiology, 15(4): 516-551.

Bradley, D. C. 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Science Reviews, 108(1-2): 16-33.

Brown, J. H.; Gillooly, J. F.; Allen, A. P.; Savage, V. M.; and West, G. B. 2004. Toward a metabolic theory of ecology. Ecology, 85(7): 1771-1789.

Bryan, S. E., and Ernst, R. E. 2008. Revised definition of large igneous provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202.

Burford, E. P.; Fomina, M.; and Gadd, G. M. 2003. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine, 67(6): 1127-1155.

Butterfield, N. J. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26(3): 386-404.

Campbell, I. H., and Allen, C. M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1(8): 554-558.

Carlson, R. W.; Garçon, M.; O’neil, J.; Reimink, J.; and Rizo, H. 2019. The nature of Earth’s first crust. Chemical Geology, 530: 119321.

Catling, D. C., and Zahnle, K. J. 2020. The Archean atmosphere. Science Advances, 6(9): eaax1420.

Condie, K. C., and O’Neill, C. 2010. The Archean-Proterozoic boundary: 500 My of tectonic transition in Earth history. American Journal of Science, 310(9): 775-790.

Corsetti, F. A.; Olcott, A. N.; and Bakermans, C. 2006. The biotic response to Neoproterozoic snowball Earth. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4): 114-130.

Dang, Z., Zhang, N., Li, Z. X., Huang, C., Spencer, C. J., & Liu, Y. (2020). Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. Communications Earth & Environment, 1(1), 1-11.

David, V. A.; Menotti-Raymond, M.; Wallace, A. C.; Roelke, M.; and others. 2014. Endogenous retrovirus insertion in the KIT oncogene determines white and white spotting in domestic cats. G3: Genes, Genomes, Genetics, g3-114.

Diamond, C. W.; Ernst, R. E.; Zhang, S. H.; and Lyons, T. W. 2021. Breaking the Boring Billion: A Case for Solid‐Earth Processes as Drivers of System‐Scale Environmental Variability During the Mid‐Proterozoic. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, 487-501.

Doolittle, W. F., and Brown, J. R. 1994. Tempo, mode, the progenote, and the universal root. Proceedings of the National Academy of Sciences, 91(15), 6721-6728.

Droser, M. L., and Gehling, J. G. 2015. The advent of animals: the view from the Ediacaran. Proceedings of the National Academy of Sciences, 112(16): 4865-4870.

Dunn, F. S.; Liu, A. G.; and Donoghue, P. C. 2018. Ediacaran developmental biology. Biological Reviews, 93(2): 914-932.

Durzyńska, J., and Goździcka-Józefiak, A. (2015). Viruses and cells intertwined since the dawn of evolution. Virology journal, 12(1), 1-10.

El Albani, A.; Bengtson, S.; Canfield, D. E.; Riboulleau, A.; and others. 2014. The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity. PLoS One, 9(6): e99438.

Endres, R. G. 2017. Entropy production selects nonequilibrium states in multistable systems. Scientific Reports, 7(1): 1-13.

Ernst, R. E., and Youbi, N. 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30-52.

Ernst, R. E.; Wingate, M. T. D.; Buchan, K. L.; and Li, Z. X. 2008. Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research, 160(1-2): 159-178.

Ernst, R. E.; Bleeker, W.; Söderlund, U.; and Kerr, A. C. 2013. Large igneous provinces and supercontinents: Toward completing the plate tectonic revolution. Lithos, 174: 1-14.

Ernst, R. E.; Bond, D. P.; Zhang, S. H.; Buchan, K. L.; and others. 2021. Large Igneous Province Record Through Time and Implications for Secular Environmental Changes and Geological Time‐Scale Boundaries. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, 1-26.

Ernst, W. G. 2009. Archean plate tectonics, rise of Proterozoic supercontinentality and onset of regional, episodic stagnant-lid behavior. Gondwana Research, 15(3-4): 243-253.

Evans, D. A., and Mitchell, R. N. 2011. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology, 39(5): 443-446.

Fedonkin, M. A. 2003. The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontological Research, 7(1): 9-41.

Finke, N.; Simister, R. L.; O’Neil, A. H.; Nomosatryo, S.; and others. 2019. Mesophilic microorganisms build terrestrial mats analogous to Precambrian microbial jungles. Nature Communications, 10(1): 1-11.

Fiorentini, M. L.; O’Neill, C.; Giuliani, A.; Choi, E.; and others. 2020. Bushveld superplume drove Proterozoic magmatism and metallogenesis in Australia. Scientific Reports, 10(1): 1-10.

Foley, B. J., and Driscoll, P. E. 2016. Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution. Geochemistry, Geophysics, Geosystems, 17(5): 1885-1914.

Fox, G. E. 2010. Origin and evolution of the ribosome. Cold Spring Harbor Perspectives in Biology, 2(9), a003483.

Gan, Z.; Yan, Y.; and Qi, Y. 2004. Entropy budget of the earth, atmosphere and ocean system. Progress in Natural Science, 14(12): 1088-1094.

Genikhovich, G., and Technau, U. 2017. On the evolution of bilaterality. Development, 144(19): 3392-3404.

Goldblatt, C.; Lenton, T. M.; and Watson, A. J. 2006. Bistability of atmospheric oxygen and the Great Oxidation. Nature, 443(7112): 683-686.

Gradstein, F. M.; Ogg, J. G.; and Hilgen, F. G. 2012. On the geologic time scale. Newsletters on Stratigraphy. 45(2):171-188.

Grieve, R., and Therriault, A. 2000. Vredefort, Sudbury, Chicxulub: three of a kind?. Annual Review of Earth and Planetary Sciences, 28(1): 305-338.

Gutteridge, J. M., and Halliwell, B. 2018. Mini-review: oxidative stress, redox stress or redox success?. Biochemical and biophysical research communications, 502(2): 183-186.

Hazen, R. M.; Papineau, D.; Bleeker, W.; Downs, R. T.; and others. 2008. Mineral evolution. American Mineralogist, 93(11-12): 1693-1720.

Hoffman, P. F.; Abbot, D. S.; Ashkenazy, Y.; Benn, D. I.; and others. 2017. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 3(11): e1600983.

Hohmann-Marriott, M. F., and Blankenship, R. E. 2011. Evolution of photosynthesis. Annual Review of Plant Biology, 62: 515-548.

Hou, X., and Bergström, J. 2003. The Chengjiang fauna—the oldest preserved animal community. Paleontological Research, 7(1): 55-70.

Hsia, C. C.; Schmitz, A.; Lambertz, M.; Perry, S. F.; and Maina, J. N. 2013. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Comprehensive Physiology, 3(2): 849.

Huston, D. L.; Pehrsson, S.; Eglington, B. M.; and Zaw, K. 2010. The geology and metallogeny of volcanic-hosted massive sulfide deposits: Variations through geologic time and with tectonic setting. Economic Geology, 105(3): 571-591.

Jahren, A. H. 2002. The biogeochemical consequences of the mid-Cretaceous superplume. Journal of Geodynamics, 34(2): 177-191.

Javaux, E. J., and Lepot, K. 2018. The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth’s middle-age. Earth-Science Reviews, 176: 68-86.

Johansson, Å.; Bingen, B.; Huhma, H.; Waight, T.; and others. 2022. A geochronological review of magmatism along the external margin of Columbia and in the Grenville-age orogens forming the core of Rodinia. Precambrian Research, 371: 106463.

Kasting, J. F. 2019. The Goldilocks planet? How silicate weathering maintains Earth “just right”. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 15(4): 235-240.

Keller, C. B.; Husson, J. M.; Mitchell, R. N.; Bottke, W. F.; and others. 2019. Neoproterozoic glacial origin of the Great Unconformity. Proceedings of the National Academy of Sciences, 116(4): 1136-1145.

Keller, G. 2005. Impacts, volcanism and mass extinction: random coincidence or cause and effect?. Australian Journal of Earth Sciences, 52(4-5): 725-757.

Keller, G. 2008. Cretaceous climate, volcanism, impacts, and biotic effects. Cretaceous Research, 29(5-6): 754-771.

Kenrick, P., and Crane, P. R. 1997. The origin and early evolution of plants on land. Nature, 389(6646): 33-39.

Kharecha, P.; Kasting, J.; and Siefert, J. 2005. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology, 3(2): 53-76.

Kitadai, N., and Maruyama, S. 2018. Origins of building blocks of life: A review. Geoscience Frontiers, 9(4): 1117-1153.

Klatt, J. M.; Chennu, A.; Arbic, B. K.; Biddanda, B. A.; and Dick, G. J. 2021. Possible link between Earth’s rotation rate and oxygenation. Nature Geoscience, 14(8): 564-570.

Kleidon, A. 2010. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1545): 1303-1315.

Knoll, A. H. 2003. Biomineralization and evolutionary history. Reviews in Mineralogy and Geochemistry, 54(1): 329-356.

___. 2014. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspectives in Biology, 6(1): a016121.

Koonin, E. V. 2010. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biology, 11(5): 1-12.

Kopp, R. E.; Kirschvink, J. L.; Hilburn, I. A.; and Nash, C. Z. 2005. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proceedings of the National Academy of Sciences, 102(32): 11131-11136.

Korenaga, J. 2006. Archean geodynamics and the thermal evolution of Earth. Geophysical Monograph-American Geophysical Union, 164: 7.

Korenaga, J.; Planavsky, N. J.; and Evans, D. A. 2017. Global water cycle and the coevolution of the Earth’s interior and surface environment. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2094): 20150393.

Krupovic, M.; Dolja, V. V., and Koonin, E. V. 2020. The LUCA and its complex virome. Nature Reviews Microbiology, 18(11): 661-670.

Lemons, D., and McGinnis, W. 2006. Genomic evolution of Hox gene clusters. Science, 313(5795): 1918-1922.

Li, Z. X.; Evans, D. A.; and Halverson, G. P. 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology, 294: 219-232.

Lindsay, J. F., and Brasier, M. D. 2002. Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins. Precambrian Research, 114(1-2): 1-34.

Liu, J.; Xia, Q. K.; Kuritani, T.; Hanski, E.; and Yu, H. R. 2017. Mantle hydration and the role of water in the generation of large igneous provinces. Nature Communications, 8(1): 1-8.

Lubnina, N. V., and Slabunov, A. I. 2011. Reconstruction of the Kenorland supercontinent in the Neoarchean based on paleomagnetic and geological data. Moscow University Geology Bulletin, 66(4): 242-249.

Maizels, N., and Weiner, A. M. 1994. Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proceedings of the National Academy of Sciences, 91(15), 6729-6734.

Maruyama, S.; Santosh, M.; and Zhao, D. 2007. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core–mantle boundary. Gondwana Research, 11(1-2): 7-37.

Maruyama, S.; Ikoma, M.; Genda, H.; Hirose, K.; and others. 2013. The naked planet Earth: most essential pre-requisite for the origin and evolution of life. Geoscience Frontiers, 4(2): 141-165.

Mather, T. A., and Schmidt, A. 2021. Environmental effects of volcanic volatile fluxes from subaerial large igneous provinces. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, 103-116.

Mazumder, R., and Arima, M. 2005. Tidal rhythmites and their implications. Earth-Science Reviews, 69(1-2): 79-95.

McNamara, A. K. 2019. A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics, 760: 199-220.

Meert, J. G. 2012. What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Research, 21(4), 987-993.

Meert, J. G., and Santosh, M. 2017. The Columbia supercontinent revisited. Gondwana Research, 50: 67-83.

Moczydłowska, M. 2008. The Ediacaran microbiota and the survival of Snowball Earth conditions. Precambrian Research, 167(1-2): 1-15.

Morton, M. C. 2017. When and how did plate tectonics begin on Earth?

Mukherjee, I.; Large, R. R.; Corkrey, R.; and Danyushevsky, L. V. 2018. The Boring Billion, a slingshot for complex life on Earth. Scientific Reports, 8(1): 1-7.

Mulkidjanian, A. Y.; Bychkov, A. Y.; Dibrova, D. V.; Galperin, M. Y.; and Koonin, E. V. 2012. Origin of first cells at terrestrial, anoxic geothermal fields. Proceedings of the National Academy of Sciences, 109(14): E821-E830.

Nance, R. D.; Worsley, T. R.; and Moody, J. B. 1986. Post-Archean biogeochemical cycles and long-term episodicity in tectonic processes. Geology, 14(6): 514-518.

Nance, R. D.; Murphy, J. B.; and Santosh, M. 2014. The supercontinent cycle: a retrospective essay. Gondwana Research, 25(1): 4-29.

Narbonne, G. M. (2005). The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu. Rev. Earth Planet. Sci., 33, 421-442.

NASA. 2020a. Can we find life? Last accessed July 12, 2021.

___. 2020b. Life in our Solar System? Meet the neighbors. Last accessed July 12, 2021.

___. 2021. NASA selects 2 missions to study “lost habitable” world of Venus. Last accessed July 12, 2021.

___. 2021a. Then there were 3: NASA to collaborate on ESA’s new Venus mission. Last accessed July 12, 2021.

___. 2021b. Venus overview. Last accessed July 12, 2021.

___. 2021c. The searchers: How will NASA look for signs of life beyond Earth? Last accessed July 12, 2021.

__. 2021d. Life in the universe: What are the odds? Last accessed July 12, 2021.

___. 2021f. What’s out there? The exoplanet sky so far? Last accessed July 12, 2021.

___. 2021e. Mars 2020 Perseverance rover. Last accessed July 12, 2021.

___. n.d. Europa Clipper: Ingredients for life. Last accessed July 12, 2021

O’Donnell, M., Langston, L., and Stillman, B. 2013. Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harbor perspectives in biology, 5(7), a010108.

Oppenheimer, C. 2011. Eruptions That Shook the World. Cambridge: Cambridge University Press. Retrieved from

Palin, R. M., and Santosh, M. 2020. Plate tectonics: What, where, why, and when?. Gondwana Research.

Park, Y.; Swanson‐Hysell, N. L.; Lisiecki, L. E.; and Macdonald, F. A. 2021. Evaluating the relationship between the area and latitude of large igneous provinces and Earth’s long‐term climate state. Large igneous provinces: A driver of global environmental and biotic changes, 153-168.

Pastor-Galán, D.; Nance, R. D.; Murphy, J. B.; and Spencer, C. J. 2019. Supercontinents: myths, mysteries, and milestones. Geological Society, London, Special Publications, 470(1): 39-64

Pehrsson, S. J.; Eglington, B. M.; Evans, D. A.; Huston, D.; and Reddy, S. M. 2016. Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. Geological Society, London, Special Publications, 424(1): 83-94.

Peters, S. E., and Gaines, R. R. 2012. Formation of the ‘Great Unconformity’as a trigger for the Cambrian explosion. Nature, 484(7394): 363-366.

Peterson, K. J.; Lyons, J. B.; Nowak, K. S.; Takacs, C. M.; and others. 2004. Estimating metazoan divergence times with a molecular clock. Proceedings of the National Academy of Sciences, 101(17): 6536-6541.

Piombino, A. 2016. The heavy links between geological events and vascular plants evolution: a brief outline. International Journal of Evolutionary Biology, 2016.

Prokoph, A.; Ernst, R. E.; and Buchan, K. L. 2004. Time-series analysis of large igneous provinces: 3500 Ma to present. The Journal of Geology, 112(1): 1-22.

Prothero, D. R. 2006. After the Dinosaurs: The Age of Mammals. Bloomington and Indianapolis: Indiana University Press. Retrieved from

Racki, G. 2020. Volcanism as a prime cause of mass extinctions: Retrospectives and perspectives. In Mass Extinctions, Volcanism, and Impacts: New Developments (Vol. 544, pp. 1-34). Geological Society of America.

Reddy, S. M., and Evans, D. A. D. 2009. Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere. Geological Society, London, Special Publications, 323(1), 1-26.

Roberts, N. M. (2013). The boring billion?–Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geoscience Frontiers, 4(6), 681-691.

Rogers, J. J., and Santosh, M. 2004. Continents and Supercontinents. Oxford University Press.

Rogers, J. J., and Santosh, M. 2009. Tectonics and surface effects of the supercontinent Columbia. Gondwana Research, 15(3-4): 373-380.

Root-Bernstein, M., and Root-Bernstein, R. 2015. The ribosome as a missing link in the evolution of life. Journal of Theoretical Biology, 367: 130-158.

Saladino, R.; Botta, G.; Pino, S.; Costanzo, G.; and Di Mauro, E. 2012. Genetics first or metabolism first? The formamide clue. Chemical Society Reviews, 41(16): 5526-5565.

Santosh, M. 2010. Supercontinent tectonics and biogeochemical cycle: a matter of ‘life and death’. Geoscience Frontiers, 1(1): 21-30.

Santosh, M. 2013. Evolution of continents, cratons and supercontinents: building the habitable Earth. Current Science, 871-879.

Santosh, M.; Maruyama, S.; and Yamamoto, S. 2009. The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Research, 15(3-4): 324-341.

Schopf, J. W. 1994. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proceedings of the National Academy of Sciences, 91(15), 6735-6742.

Schwab, I. R. 2018. The evolution of eyes: Major steps. the Keeler lecture 2017: Centenary of Keeler Ltd. Eye, 32(2): 302-313.

Simpson, G. G. 1944. Tempo and Mode in Evolution. New York: Columbia University Press.

Sleep, N. H. 2010. The Hadean-Archaean environment. Cold Spring Harbor Perspectives in Biology, 2(6): a002527.

Sleep, N. H., Bird, D. K., & Pope, E. C. 2011. Serpentinite and the dawn of life. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1580), 2857-2869.

Spalding, C., and Fischer, W. W. 2019. A shorter Archean day-length biases interpretations of the early Earth’s climate. Earth and Planetary Science Letters, 514: 28-36.

Sperling, E. A.; Frieder, C. A.; Raman, A. V.; Girguis, P. R.; and others. 2013. Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences, 110(33): 13446-13451.

Stern, R. J., and Miller, N. R. 2018. Did the transition to plate tectonics cause Neoproterozoic Snowball Earth?. Terra Nova, 30(2): 87-94.

Stern, R. J., and Miller, N. R. 2021. Neoproterozoic Glaciation—Snowball Earth Hypothesis. Encyclopedia of Geology, 546-556. (PDF download)

Taylor, S. R., and McLennan, S. M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241-265.

Torsvik, T. H., and Cocks, L. R. M. 2013. Gondwana from top to base in space and time. Gondwana Research, 24(3-4): 999-1030.

Trewavas, A. 2003. Aspects of plant intelligence. Annals of botany, 92(1): 1-20.

Tsekhmistrenko, M.; Sigloch, K.; Hosseini, K.; and Barruol, G. 2021. A tree of Indo-African mantle plumes imaged by seismic tomography. Nature Geoscience, 14(8): 612-619.

UCAR n.d. How the Geosphere Rocks Climate.

Valentine, J. W., and Moores, E. M. 1970. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature, 228(5272): 657-659.

van Maldegem, L. M.; Sansjofre, P.; Weijers, J. W.; Wolkenstein, K.; and others. 2019. Bisnorgammacerane traces predatory pressure and the persistent rise of algal ecosystems after Snowball Earth. Nature Communications, 10(1): 1-11.

Walker, S. I. 2017. Origins of life: a problem for physics, a key issues review. Reports on Progress in Physics, 80(9): 092601.

Walker, S. I.; Packard, N.; and Cody, G. D. 2017. Re-conceptualizing the origins of life. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,375: 20160337.

Waltham, D. 2015. Milankovitch period uncertainties and their impact on cyclostratigraphy. Journal of Sedimentary Research, 85(8): 990-998.

Wang, C.; Mitchell, R. N.; Murphy, J. B.; Peng, P.; and Spencer, C. J. 2021. The role of megacontinents in the supercontinent cycle. Geology, 49(4): 402-406.

Weller, O. M., and St-Onge, M. R. 2017. Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen. Nature Geoscience, 10(4): 305-311.

Wessner, D. R. 2010. The origins of viruses. Nature Education, 3(9), 37.

Xiao, S., and Tang, Q. 2018. After the boring billion and before the freezing millions: evolutionary patterns and innovations in the Tonian Period. Emerging topics in life sciences, 2(2): 161-171.

Yale, L. B., and Carpenter, S. J. 1998. Large igneous provinces and giant dike swarms: proxies for supercontinent cyclicity and mantle convection. Earth and Planetary Science Letters, 163(1-4): 109-122.

Youbi, N.; Ernst, R. E.; Söderlund, U.; Boumehdi, M. A.; and others. 2020. The Central Iapetus magmatic province: An updated review and link with the ca. 580 Ma Gaskiers glaciation (Vol. 544, pp. 35-66). Geological Society of America Special Paper.

Youbi, N.; Ernst, R. E.; Mitchell, R. N.; Boumehdi, M. A.; and others. 2021. Preliminary Appraisal of a Correlation Between Glaciations and Large Igneous Provinces Over the Past 720 Million Years. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, 169-190.

Young, G. M. 2013. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geoscience Frontiers, 4(3): 247-261.

Zahnle, K.; Schaefer, L.; and Fegley, B. 2010. Earth’s earliest atmospheres. Cold Spring Harbor Perspectives in Biology, 2(10): a004895.

Zhang, X.; Shu, D.; Han, J.; Zhang, Z.; and others. 2014. Triggers for the Cambrian explosion: hypotheses and problems. Gondwana Research, 25(3): 896-909. (Abstract only)

Zhang, S. H.; Ernst, R. E.; Pei, J. L.; Zhao, Y.; and Hu, G. H. 2021. Large Igneous Provinces (LIPs) and Anoxia Events in “The Boring Billion”. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, 449-486.

Zhao, G.; Sun, M.; Wilde, S. A.; and Li, S. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews, 67(1-2): 91-123.

Where Cats Come From: Draft

This definitely is a work in progress. Last summer, I blithely set up a simple outline of the book I am trying to write about how cats evolved. Then I started to do some research and, basically, got ambushed by the Precambrian.

I know that sounds weird, but a lot of stuff happened back then; it’s interesting enough to cover and still relevant today, but there are a lot of uncertainties about those ancient times.

I’m still working my way through it now.

I have been doing some posts meanwhile, originally intending them as chapters, but as I have learned more about the Precambrian, I also can see that these will all have to be redone at some point before resuming the expected flow of history with the tetrapods.

This page brings together those posts; while individually they’re interesting to readers, there is no overarching narrative yet. Only recently, with the supercontinents, did things really start to come together for me.

In the meantime, welcome to my work desk!

Update, May 10, 2022: Getting the Columbia/Nuna chapter together has really helped focus my thoughts. I can see now that everything before that must be rewritten/condensed into just a chapter or two, but I will wait until finishing the Gondwana to do that., public domain.

HOLD THE EUKARYOTES BRIEFLY (It’s okay; they actually did hang out, not doing much, for about a billion years before taking a dominant role)! GEOLOGY COMING THROUGH!


  • Ediacaran Times.
  • The “Cambrian Explosion.”
  • The Age of Fish: Jaws and other neat features.
  • A “thriller” mass extinction.
  • Tetrapods.
  • Mammals vs. Dinosaurs: Round 1. ($)
  • Mammals vs. Dinosaurs, Round 2. ($)
  • Mammals vs. Dinosaurs, Round 3. ($)
  • The K/T (K/Pg) Extinction.($)
  • Paleocene Mammals and Dinosaurs. ($)
  • Carnivora.($)
  • Eocene Saber-toothed “Cats.” ($)
  • The Big Freeze.($)
  • Oligocene Wildlife.($)
  • Cats and “Dogs.” ($)
  • Miocene Saber-toothed “Cats.” ($)
  • Miocene Cats, With and Without Saberteeth. ($)
  • The Miocene-Pliocene Toll Bridge. ($)
  • Smilodon and Homotherium.($)
  • Main Character: Felinae, the “Cone-tooths.” ($)
  • South America is Invaded.($)
  • The Ice Ages Begin.($)
  • Seeking Refuge. ($)
  • Plio-Pleistocene Wildlife. ($)
  • Main Character: Us. ($)
  • The End of Sabertooths and Most Giants. ($)
  • Choosing Hard Work Over Life in Eden. ($)
  • Domestication of a Little Wildcat. ($)
  • Mercy.


Updated March 9, 2022.

Volcanism: A Main Character?

That’s the caldera of Santorini Volcano behind this beautiful little poser.

Now put on your hard hats — it’s time for a little chemistry.

Very little.

In fact, just this: “What do you get when you remove the oxygen (chemical symbol O) from H2O?”

Okay, so there’s really no need for special gear (unless you want to follow a working geologist out into the field to collect and study some of the world’s oldest rocks).

You get H2 — hydrogen — of course.

Believe it or not, this answer is closely tied to the origin of life on Earth. So is volcanism: source of the heat energy powering that and other chemical reactions necessary for emerging life.

Continue reading “Volcanism: A Main Character?”

Main Character: Plate Tectonics

That tiger — and the little avian dinosaur in the foreground, keeping a respectful distance away from the cat — are walking along one of many river beds that cross the Terai, a flat grassy wetland that runs along the feet of the Himalayas in Bhutan, India, and Nepal.

This particular river is in Nepal, according to the photographer.

As you can see, Terai soil is deep and fertile, but mountain floods can slash through it easily. They also bring down the nearby towering range piece by piece as rounded boulders and cobblestones.

Thanks to plate tectonics, though, the Himalayas continue to rise despite this constant assault by rain and ice.

Down in the flatlands, a young Ganges River flows through the Terai, gathering in lesser streams like the one shown above and growing in size and volume as it travels more than a thousand miles eastward and then south to the distant Bay of Bengal.

India and Nepal established important nature preserves here in the early 1970s. Bengal tigers are also protected elsewhere in the region, including the Sunderbans: a vast mangrove forest that covers the Ganges Delta of India and Bangladesh.

What does all that have to do with plate tectonics?

Well, this:

A few caveats to this excellent video: Per sources that I have read, other factors were also at work during the great greenhouse-icehouse transition, but let’s save that for Chapter 18. As I understand it, there is consensus on the evolution of whales, but otherwise the India-Asia collision and its effects on plant and animal life were very complex, as this abstract shows. Not all experts agree with Dr. Hughes. In a later chapter, though, we’ll look into another, even more controversial hypothesis: that big cats might have evolved in Tibet!

Cats and Plate Tectonics

Take the part in this video where they mention cooling, for instance.

Based on how cats behave now and the ways that behavior has shaped their anatomy and that of their fossil relatives down through time, it’s likely that Family Felidae evolved to fill a predator niche in an ecosystem that existed in between the forest’s edge and an open plain. (Martin).

That was ideal! There was sufficient cover to sneak up on prey (and trees to scoot up into when danger threatened), as well as just enough open space for a short sprint and deadly pounce. (Werdelin)

Now try to imagine a place like that in Late Cretaceous times.

Continue reading “Main Character: Plate Tectonics”

Main Character: Earth

Great news!

A spacecraft has found definite signs of life on a habitable world!

Well, it was Earth and the craft was a probe named Galileo that flew past its home in 1990 for an equipment check before sailing on to explore the Solar System as far as Jupiter. (Here’s how that turned out.)

This isn’t from Galileo, but it is definitely cool. In 2020 NASA turned some of its data on Earth into music and released the video. Check out which instrument is “playing” atmosphere, water, etc., at the YouTube page.

Still, congratulations to the rocket scientists!

And even though our focus is on how cats evolved, we do need to look at Earth and ask the basic questions: where did it come from? What makes our planet such a good stage for, and cast member in, that ensemble play we call Life?

Only then will details in later chapters make sense, for instance, why cats have four legs and a long tail (mammal predators do have other options); the whole cat-dog thing and whether T. Rex ate any of their direct ancestors; why cats have pretty fur but scary claws and teeth (compared to our own flat fingernails and chompers), and so forth.

Continue reading “Main Character: Earth”

Does Life Exist Elsewhere?

Whatever happened with that news last year about finding life on Venus? Something about phosphine, whatever that is.

And what about the cigar-shaped space rock with the unusual name (Oumuamua) they found in 2017 and called an “interstellar visitor”? Aliens, right? Where’s the follow-up on that?

The shortest, simplest answer to both these versions of the Big Question is that scientists are working on it.

Their scientific method is a very useful tool for getting to the root of things, but it takes time. Too, jargon and the technical details involved do not make for reader-friendly stories.

That’s why journalists usually wait for results to be announced in simple language.

Many years can pass in between press conferences. And sometimes other research teams come up with different results in the meantime, which the journalists also must report.

“…the launching of this ‘bottle’ into the cosmic ‘ocean’ says something very hopeful about life on this planet.” — Carl Sagan via Wikipedia.

This extended, open-ended process generally leaves us laypeople feeling confused and a little put off by Science — except when the topic is “Life Out There.”

THAT always gets our attention.

It appeals to our gut feeling that, if humanity keeps searching long enough, we’ll find ET someday, looking back at us and glad to discover that it’s not alone in this huge universe.

Is that a valid hope or are we just projecting our social selves onto the cosmos?

Alien life isn’t impossible

I’ve found out something cool while reading through the sources for this chapter of the series on how cats evolved.

Continue reading “Does Life Exist Elsewhere?”

What Is Life?

Trigger warning for people who have been traumatized by or become anxious around animals.

Adalbert Dragon/Shutterstock

Life is incredibly precious, you realize seconds after meeting a cat like this and knowing that you might come out on the losing end here.

The usual way we see our lives — as something to get through each day — evaporates under this jaguar’s frank stare.

Welcome to the food chain, pal!

Like it or not, you and I are part of the great web of life.

Individually and as groups, we try to avoid the scary and unpleasant parts by insulating ourselves from Nature as much as possible. This often works, too.

However, Nature is bigger than us. Bottom line: like any other species, H. sapiens eats and can be eaten.

Now for the good news.

“Cave lions suck!” “Bears, too! — Prehistoric people. (Image:
EOL, CC 2.0)

Human beings have been dealing successfully with predators like this jaguar and even worse for hundreds of millennia.

The survivors of such encounters have passed along to us a built-in emergency mode that gives our famously big brains a chance to think their way through a crisis.

Continue reading “What Is Life?”

Time: Human vs. Geological

Life on Earth is strange, and I don’t just mean physically. It’s odd how life goes on here.

In terms of time, we are so out of sync with our planet!

About 75% of the Earth’s outer crust, where we live, is composed of rock similar to this. (Image: James St. John, CC BY 2.0)

First, look at our natural surroundings — steady as a rock (most of the time, anyway).

And usually very, very old.

Then look at humans, or at cats — each born helpless; struggling to reach maturity; struggling more to survive and reproduce; and then aging and passing away.

It all happens quickly, too (at least to an outside observer: parts of our own lives seem to take forever).

In the wild, cats don’t live long, maybe five to ten years, or a little more if they’re tough and lucky.

More beautiful than any rock. (Image: SantiPhotoSS/Shutterstock)

Exceptionally elderly people might live for a hundred years, but even this is short compared to the social fabric that they are wrapped in. While often resembling a patchwork quilt, its history goes back many centuries.

The current British monarch, for example, is in her mid-90s. That isn’t very old, considering how long her royal house has been around, and it’s positively youthful compared to the age of her kingdom.

Still, what do centuries and millennia mean to a multimillion-year-old rock?

Nothing, of course. It’s inert, although there may be something living underneath it or even inside. The rock’s components — silica, oxygen, and various other elements — are just chemistry, facts for nerds to ponder.

Biology is where it’s at, and we’re at the top of the heap!

This delusion is so powerful that most of us need a strong reason to ask the really interesting question — what does that multimillion-year-old rock mean to us?

Continue reading “Time: Human vs. Geological”

To Make A Cat

Look! A cat!

No, seriously. Have you ever really looked at one of these before?

The kitty doesn’t have to be Fluffy, although house cats are a lot easier to study at home than, say, mountain lions or tigers.

Believe it or not, apart from size and a few lifestyle-related anatomical details, you do have a little mountain lion/tiger there!

The essence of Cat is not so easy to describe. (Image: Olas, CC BY-SA 2.0)

That’s because all members of family Felidae are built alike. (Turner and Anton)

What is a cat?

This information is from Kitchener et al., Wright and Walters, and some fun hours spent watching house cats — my own and friends’ cats.

The long feline body is much more supple than that of a gray wolf (Fido’s closest relative; I use wolves for comparison because dogs have been domesticated longer and in many cases don’t look much like their forebear now; outside the show ring, Fluffy still resembles its African wildcat ancestor in many ways).

Continue reading “To Make A Cat”


Have you ever wondered why the spring season in both hemispheres feels as old as forever and as young as a newborn baby — at the same time?

Evolution goes back billions of years, but new possibilities open up whenever life awakens and reproduces itself.

On a related note, ever wonder about how cats evolved? Or how closely related house cats — the “lions in our living room” — really are to the big cats?

Sabercats cannot be ignored. (Image: Wim Hoppenbrouwers, CC BY-NC-ND 2.0)

And what about those saber-toothed cats?

Earth’s apex predators have gone from T. Rex & Company to today’s lions, tigers, and other carnivorous mammals (including domestic cats, which are apex small predators in most human-dominated habitats).

Why did evolution take this route?

Continue reading “Introduction”